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SUMMARY

The paper addresses the problem of a reliable control for interval time-varying delay system with Marko-
vian jumping parameters. A new practical actuator fault model, by assuming that the actuator fault obeys
a certain probabilistic distribution, is considered. Delay-dependent conditions for the solvability of these
problems are obtained via new parameter-dependent Lyapunov function. The closed-loop systems are
stochastically stable not only when all actuators are operational, but also in case of some actuator failures.
Numerical examples are given to illustrate the effectiveness of the proposed design method. Copyright �
2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A surge of interests in studying the class of Markov jump linear systems (MJLS) has been
observed for the past decades. The MJLS are dynamical systems subject to abrupt variations in
their structures. Since MJLS are natural to represent dynamical systems that are often inherently
vulnerable to component failures, sudden disturbances, change of internal interconnections, and
abrupt variations in operating conditions, they are an important class of stochastic dynamical
systems [1–3] and the references therein.

Time delays are inherent features of many physical processes, which are often the main cause
for instability and poor performance of a control system. Therefore, time-delay systems have been
studied in the past years and various research topics on delay systems have been investigated
[4–7]. Recently, Markovian systems with time delays have been considered. Sufficient conditions
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for delay-independent mean-square stochastic stability (MSSS) [8–10] and for delay-dependent
MSSS [11–13] were obtained.

However, all the aforementioned results are under a full reliability assumption that all actuators
are operational. In fact, actuators play a very important role in control systems, which are respon-
sible for transforming the controller output to the plant, how to preserve the closed-loop control
system performance under actuator fault condition will be more meaningful. In practical situations,
the actuator completely failure or partial failure often occurs in the real world. The main task of
this study is to design a controller such that the closed-loop system can maintain stability and good
performance, not only when all control components are operational, but also in case of existing
some abnormal actuators including fully outages. To the best of our knowledge, there are very
few papers dealing with the reliable control for the stochastic time-delay systems with Markovian
jumping parameters. This motivates the development of the so-called reliable control theory.

Over the past few decades, the study of reliable control problem becomes more and more
practically meaningful and has attracted considerable attention [14–20]. It is noted that the reli-
able controller design methods in the aforementioned literatures are all based on the assumption
that control component failures are modeled as outages, i.e. when a failure occurs, the actua-
tors signal simply becomes zero. However, it cannot represent actuator-failure exactly. The actu-
ator may not be a complete failure, that is, the scale factor �i =0 is the simplest of special
cases. In practical systems, because of actuators aging, zero shift, Electromagnetic Interference,
nonlinear amplification in different frequency fields and so on occur. It will be more reason-
able and meaningful if the fault scale factor obeys a certain probabilistic distribution in an
interval. Up to the authors’ knowledge, the stabilization problem for MJLS with probabilistic
actuators fault has not been investigated in the open literatures, which motivates us to the further
study.

In this paper, we consider the problem of reliable control for a class of continuous-time Marko-
vian jump systems with interval time-varying delay and stochastic failure. The main contributions
of this paper are: (1) A more general fault model is adopted for actuator failures, which satisfies a
certain probabilistic distribution. (2) To obtain a less conservative results, a new Lyapunov function
is constructed, which includes the lower and upper delay bound of interval time-varying delay.
Based on this, one splits the item

∫ t
t−�(t) xT(s)T (rt )x(s)ds into two parts to deal with, respectively,

and uses the convexity of the matrix functions to avoid the conservative caused by enlarging �(t)
to �M in the deriving results. Then, by using the linear matrix inequality (LMI) method, sufficient
conditions are derived to ensure the existence of the controller which is characterized by the solu-
tion to a set of LMIs, Illustrative examples are exploited to demonstrate the applicability of the
proposed design approach.

Notation: Rn denotes the n-dimensional Euclidean space, Rn×m is the set of real n×m matrices,
I is the identity matrix of appropriate dimensions, ‖·‖ stands for the Euclidean vector norm or
spectral norm as appropriate. The notation X>0 (respectively, X<0), for X ∈Rn×n means that
the matrix X is a real symmetric positive definite (respectively, negative definite). When x is a
stochastic variable , E{x} stands for the expectation of x . The asterisk ∗ in a matrix is used to
denote the term that is induced by symmetry. Matrices, if they are not explicitly stated, are assumed
to have compatible dimensions.

2. SYSTEMS DESCRIPTION AND PRELIMINARIES

Fix a probability space (�,F,P) and consider the following linear stochastic systems with marko-
vian jump parameters and time-varying delay

� :

{
ẋ(t)= A(rt )x(t)+ Ad (rt )x(t −�(t))+ B(rt )u(t)

x(t)=�(t) ∀t ∈ [−�M ,−�m]
(1)
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where x(t)∈Rn is the state vector; u(t)∈Rm is the control input; �(t) is the initial condition of
x(t); {rt } is a continuous-time Markovian process with right continuous trajectories and taking
values in a finite set S={1,2, . . . ,N} with stationary transition probabilities ��{�i j } given by:

Prob{�t+h = j |rt = i}=
{

�i j h+o(h), i �= j

1+�i i h+o(h), i = j
(2)

where h>0, limh→0 o(h)/h =0, and �i j�0, for j �= i is the transition rate from mode i at time t
to the mode j at time t +h and

�i i =−
N∑

j=1, j �=i
�i j (3)

The set S comprises the various operation modes of system (1) and for each possible value
of rt = i ∈S, the system matrices of the i th mode are denoted by Ai , Bi , and Adi, which are
considered here to be real known with appropriate dimensions. It is assumed that the jumping
process, {rt } is accessible, i.e. the operation mode of system (�) is known for every t�0.

In the system (1), the time delay �(t) is an interval time-varying continuous function satisfying
the following assumption:

0��m��(t)��M<∞, �̇(t)�� ∀t>0 (4)

where �m is the lower bound and �M is the upper bound of the delay �(t).

Remark 1
In practice, the time-varying delay often lies in an interval, in which the lower bound is not 0.
Therefore, the introduction of the lower bound �m will naturally reduce the conservatism. Even for
�m =0, the criterion may be less conservative than the existing references. This will be demonstrated
through numerical examples in the next section.

We consider the following static state feedback controller for the system (1)

ui (t)= Ki x(t) (5)

where K is a feedback matrix to be determined.
Let uF

i (t) represent the control input after faults have occurred. Then the following fault model
is adopted for this study:

uF
i (t) = �ui (t)

=
m∑

j=1
� j H j Ki x(t) (6)

where, �=diag{�1 . . .�m} with � j ( j =1, . . . ,m) are m unrelated random variables. It is
assumed that � j is with mathematical expectation � j and variance �2

j , respectively, and

Hj =diag{0, . . . ,0︸ ︷︷ ︸
j−1

,1,0, . . . ,0︸ ︷︷ ︸
m− j

}. For convenience, we also define �̄=diag{�1, . . . ,�m} and �=

diag{�1, . . . ,�m}.
Remark 2
Equation (6) describes actuator fault by a random matrix � that satisfies a certain probabilistic
distribution in an interval. In particular, if the case �i =0, it stands for an entire missing of signals,
and if �i =1, it indicates intactness. In fact, actuator signal drift usually occurs in practice situations,
while completely failure and intactness are only two special cases.

Combining (1) and (6), we obtain the following close-loop system as follows:

ẋ(t)= (Ai + Bi �̄Ki )x(t)+ Bi (�−�̄)Ki x(t)+ Adix(t −�(t)) (7)
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For convenience, we define A1i = A+ B�̄K , A2i = Bi (�−�̄)Ki then (7) can be rewritten as

ẋ(t)= A1i x(t)+ A2i x(t)+ Adix(t −�(t)) (8)

The objective of this study is to develop a reliable controller for the closed-loop system with
stochastic fault model described by (6). For this purpose, the following lemmas and definitions are
introduced.

Lemma 1 (Gu et al. [5])
For any constant matrix R ∈Rn×n , R>0, scalars �m��(t)��M , and vector function ẋ : [−�m,0]→
Rn such that the following integration is well defined, it holds that

−�m

∫ t

t−�m

ẋ(t)Rẋ(t)�
[

x(t −�(t))
x(t −�m)

]T[−R R
∗ −R

][
x(t −�(t))
x(t −�m)

]
(9)

Lemma 2 (Tian and Peng [21])
Suppose M , N , and � are constant matrices of appropriate dimensions. Then

(�(t)−�m)M +(�M −�(t))N +�<0 (10)

is true for any �(t)∈ [�m �M ] if and only if

(�M −�m)M +� < 0 (11)

(�M −�m)N +� < 0 (12)

Remark 3
It will be shown that Lemmas 1 and 2 play key roles in the derivation of a criterion in this paper,
which will lead to less conservation.

Definition 1
The system (8) is said to be exponentially mean-square stable (EMSS), if there exist constants
	>0,
>0, such that t>0

E{‖x(t)‖2}�	e−
t sup
−�M<s<0

{‖�(s)‖2} (13)

Definition 2
For a given function V :Cb

F0
([−�M ,0], Rn)×S, its infinitesimal operator L [22] is defined as

LV (xt )= lim
�→0+

1

�
[E(V (xt+�|xt )−V (xt ))] (14)

3. MAIN RESULT

In this section, we aim to develop an innovative approach to guarantee that the system (8) is
exponentially mean-square stable. The controller Ki could be solved from the following results.

Theorem 1
For given scalars �m , �M , �l , �l (l =1, . . . ,m), and matrix Ki , the system (1) with the actuator fault
model (6) is EMSS, if there exist positive-definite matrices Pi>0, Ti>0, Ri>0, Q1>0, Q2>0,
S1>0, S2>0, Mik, and Nik, i ∈S,k ∈{1,2,3,4} of appropriate dimensions, such that matrices
inequalities (15) and (16) hold.

�l
ijk =

⎡
⎢⎢⎣

�ij AT
i HT

i �l
ik

∗ −R−1 0 0

∗ ∗ −R̃
−1

0
∗ ∗ ∗ −R2

⎤
⎥⎥⎦<0 (i, j ∈S;k =1,2,3,4; l =1,2) (15)
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N∑
j=1

�ijTj<Sr (r =1,2; i, j ∈S) (16)

where

�ij =

⎡
⎢⎢⎢⎢⎢⎣

�1i j R1 + Mi1 Pi Adi − Mi1 + Ni1 −Ni1

∗ Q2− Q1− R1 + Mi2 + MT
i2 MT

i3 − Mi2 + Ni2 MT
i4− Ni2

∗ ∗ −(1−�)Ti− Mi3− MT
i3 + Ni3 + N T

i3 −MT
i4 + N T

i4− Ni3

∗ ∗ ∗ −Q2 − Ni4− N T
i4

⎤
⎥⎥⎥⎥⎥⎦

�1i j = Pi A1i + AT
1i Pi +

N∑
j=1

�ij Pj +Ti + Q1 − R1 +�m S1 +(�M −�m)S2

Hi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�1 Bi H1 Ki

...

�k Bi Hk Ki

...

�m Bi Hm Ki

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mn×n

0mn×n 0mn×n 0mn×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�1
ik = √

�M −�m Mik (i ∈S;k =1,2,3,4)

�2
ik = √

�M −�m Nik (i ∈S;k =1,2,3,4)

R= �2
m R1 +(�M −�m)R2

R̃= diag{R . . .R︸ ︷︷ ︸
m

}

Ai = [Ai + Bi �̄Ki 0 Adi 0]

Proof
Construct a Lyapunov–Krasovskii functional candidate as

V (xt ,rt ) =
4∑

i=1
Vi (xt ,rt )

V1(xt ,rt ) = xT(t)P(rt )x(t)

V2(xt ,rt ) =
∫ t

t−�(t)
xT(s)T (rt )x(s)ds+

∫ t

t−�m

xT(s)Q1x(s)ds+
∫ t−�m

t−�M

xT(s)Q2x(s)ds

V3(xt ,rt ) = �m

∫ 0

−�m

∫ t

t+s
ẋT(v)R1 ẋ(v)dv ds+

∫ −�m

−�M

∫ t

t+s
ẋT(v)R2 ẋ(v)dv ds

V4(xt ,rt ) =
∫ 0

−�m

∫ t

t+s
xT(v)S1x(v)dv ds+

∫ −�m

−�M

∫ t

t+s
xT(v)S2x(v)dv ds

From the definition of � and �̄, we can easily know

E[Bi (�−�̄)Ki ]=0 (17)
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Also, we can have (18) from the definition � in (6)

[Bi (�−�̄)Ki ]
TR[Bi (�−�̄)Ki ]=

m∑
j=1

�2
j K TCT

i BTRBi Hj Ki (18)

Using Lemma 1 and the infinitesimal operator (14) for system (8), we have

LV1(xt , i, t) = 2xT(t)Pi

[(
A1i + 1

2

N∑
j=1

�ij Pj

)
x(t)+ Adix(t −�(t))

]
(19)

LV2(xt , i, t) � xT(t)(Ti + Q1)x(t)−(1−�)xT(t −�(t))Ti x(t −�(t))

+
∫ t

t−�(t)
xT(s)

N∑
j=1

�ijTj x(s)ds

+xT(t −�m)(Q2 − Q1)x(t −�m)−xT(t −�M )Q2x(t −�M ) (20)

LV3(xt , i, t) = ẋT(t)Rẋ(t)−�m

∫ t

t−�m

ẋT(s)R1 ẋ(s)ds−
∫ t−�m

t−�M

ẋT(s)R2 ẋ(s)ds

� �T(t)AT
i RAi�(t)+xT(t)

m∑
j=1

[� j Bi Hj Ki ]
TR[� j Bi Hj Ki ]x(t)

+
[

x(t)

x(t −�m)

]T[−R1 R1

R1 −R1

][
x(t)

x(t −�m)

]
(21)

LV4(xt , i, t) = xT(t)[�m S1 +(�M −�m)S2]x(t)−
∫ t

t−�m

xT(s)S1x(s)ds

−
∫ t−�m

t−�M

xT(s)S2x(s)ds (22)

and employing the free-weighing matrix method [23, 24]

2�T(t)Mik

[
x(t −�m)−x(t −�(t))−

∫ t−�m

t−�(t)
ẋ(s)ds

]
=0 (23)

2�T(t)Nik

[
x(t −�(t))−x(t −�M )−

∫ t−�(t)

t−�M

ẋ(s)ds

]
=0 (24)

−2�T(t)Mik

∫ t−�m

t−�(t)
ẋ(s)ds�(�(t)−�m)�T(t)Mik R−1

2 MT
ik�(t)

+
∫ t−�m

t−�(t)
ẋT(s)R2 ẋ(s)ds (25)

−2�T(t)Nik

∫ t−�(t)

t−�M

ẋ(s)ds�(�M −�(t))�T(t)Nik R−1
2 N T

ik�(t)

+
∫ t−�(t)

t−�M

ẋT(s)R2 ẋ(s)ds (26)
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Define
∑N

j=1 
ijTj =T, from (16), it has

∫ t

t−�(t)
xT(s)Tx(s)ds−

∫ t

t−�m

xT(s)S1x(s)ds−
∫ t−�m

t−�M

xT(s)S2x(s)ds

=
∫ t

t−�m

xT(s)(T−S1)x(s)ds+
∫ t−�m

t−�(t)
xT(s)Tx(s)ds−

∫ t−�m

t−�M

xT(s)S2x(s)ds

�
∫ t

t−�m

xT(s)(T−S1)x(s)ds+
∫ t−�m

t−�(t)
xT(s)(T−S2)x(s)ds�0 (27)

Combining (19)–(27), we have

LV (xt , i, t) � �T(t)[�ij +AT
i RAi +HTRH+(�(t)−�m)(t)Mik R−1

2 MT
ik

+(�M −�(t))Nik R−1
2 N T

ik]�(t) (28)

where �(t)= [xT(t) xT(t −�m) xT(t −�(t)) xT(t −�M )]T, R,H,Ai , and �ij are defined in
Theorem 1.

Using Schur complements and Lemma 2, it can be shown that (15) is the sufficient condition
for guaranteeing

�ij +AT
i RAi +HTRH+(�(t)−�m)(t)Mik R−1

2 MT
ik +(�M −�(t))Nik R−1

2 N T
ik<0 (29)

Then, the following inequality can be concluded

E{LV (xt , i, t)}<−
min(�l
ijk)E{�T(t)�(t)} (30)

Define a new function as

W (xt , i, t)=e�t V (xt , i, t) (31)

Its infinitesimal operator L is given by

W(xt , i, t)=�e�t V (xt , i, t)+e�tLV (xt , i, t) (32)

By the generalized Itô formula [22], we can obtain from (32) that

E{W (xt , i, t)}−E{W (x0, i)}=
∫ t

0
�e�sE{V (xs, i)}ds+

∫ t

0
e�sE{LV (xs, i)}ds (33)

Then, using the similar method of [25], we can see that there exists a positive number 	 such that
for t>0

E{V (xt , i, t)}�	 sup
−�M�s�0

{‖�(s)‖2}e−�t (34)

since V (xt , i, t)�{
min(Pi )}xT(t)x(t), it can be shown from (34) that for t�0

E{xT(t)x(t)}�	̄−�t sup
−�M�s�0

{‖�(s)‖2} (35)

where 	̄=	/(
min Pi ). Recalling Definition 1, the proof can be completed. �

Remark 4
Theorem 1 provides a delay-dependent stochastic stability condition for MJS with interval time-
varying delay. The convexity of the matrix functions is used to avoid the conservative caused by
enlarging �(t) to �M in the deriving results.
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Remark 5
By introducing the item

∫ t
t−�(t) xT(s)T (rt )x(s)ds in V2(xt ,rt ), and splitting its weak infinitesimal

operator into two parts, it will lead to less conservative of Theorem 1, which will be demonstrated
through numerical examples in the next section.

If Bi =0, (i ∈S), then the system (1) can be converted as an unforce system

ẋ(t) = A(rt )x(t)+ Ad (rt )x(t −�(t))

x(t) = �(t) ∀t ∈ [−�M ,−�m]
(36)

The following result can be concluded directly from Theorem 1.

Corollary 1
For given scalars �m , �M , �l , and �l (l =1, . . . ,m), the system (36) is EMSS, if there exist positive-
definite matrices Pi>0, Ti>0, Ri>0, Q1>0, Q2>0, S1>0, S2>0, Mik, and Nik, i ∈S,k ∈{1,2,3,4}
of appropriate dimensions, such that LMIs (37) and (38) hold.⎡

⎢⎣�̄ij Ā
T
i �l

ik

∗ −R 0

∗ ∗ 0− R2

⎤
⎥⎦<0 (i, j ∈S;k =1,2,3,4; l =1,2) (37)

N∑
j=1

�ijTj<Sr (r =1,2; i, j ∈S) (38)

where

�̄ij =

⎡
⎢⎢⎢⎢⎣

�̄1ij R1 + Mi1 Pi Adi − Mi1 + Ni1 −Ni1

∗ Q2− Q1− R1 + Mi2 + MT
i2 MT

i3 − Mi2 + Ni2 MT
i4 − Ni2

∗ ∗ −(1−�)Ti− Mi3− MT
i3 + Ni3 + N T

i3 −MT
i4 + N T

i4− Ni3

∗ ∗ ∗ −Q2− Ni4− N T
i4

⎤
⎥⎥⎥⎥⎦

�̄1ij = Pi Ai + AT
i Pi +

N∑
j=1

�ij Pj +Ti + Q1 − R1 +�m S1 +(�M −�m)S2

Āi = [AiR 0 AdiR 0]

Now, we are in a position to state a delay-dependent reliable control for the system (8) based
on Theorem 1.

Theorem 2
For prescribed �l , �l (l =1, . . . ,m) and given scalars ε,�m,�M , the system (1) with the faulty
actuator (6) is EMSS if there exist positive-definite matrices Xi>0, T̂i>0, R̂i>0, Q̂1>0, Q̂2>0,
Ŝ1>0, Ŝ2>0, M̂ik, N̂ik, i ∈S,k ∈{1,2,3,4} and Yi of appropriate dimensions, such that LMIs (39)
and (40) hold. Furthermore, the reliable controller gain Ki =Yi X−1

i .⎡
⎢⎢⎢⎢⎢⎣

�̂i Â
T
i Ĥ

T
i �̂

l
ik

∗ −2εXi +ε2R̂ 0 0

∗ ∗ −2ε X̃i +ε2 ˜̂
R 0

∗ ∗ ∗ −R̂2

⎤
⎥⎥⎥⎥⎥⎦<0 (i, j ∈S, i �= j; ;k =1,2,3,4, l =1,2) (39)

N∑
j=1

�ijT̂ j<Ŝr (r =1,2; i, j ∈S) (40)
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where

�̂i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̃1i R̂1 + M̂i1 Adi Xi − M̂i1 + N̂i1 −N̂i1 �ijXi

∗ Q̂2 − Q̂1 − R̂1 + M̂i2 + M̂T
i2 M̂T

i3 − M̂i2 + N̂i2 M̂T
i4 − N̂i2 0

∗ ∗ −(1−�)T̂i − M̂i3 − M̂T
i3 + N̂i3 + N̂ T

i3 −M̂T
i4 + N̂ T

i4 − N̂i3 0

∗ ∗ ∗ −Q̂2 − N̂i4 − N̂ T
i4 0

∗ ∗ ∗ ∗ −�ijX̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�̂1i = Ai Xi + Xi AT
i + Bi �Yi +Y T

i �T BT
i + T̂i + Q̂1 − R̂1 +�m Ŝ1 +(�M −�m )Ŝ2 +�ii Xi

Ĥi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1 Bi H1Yi

.

.

.

εk Bi HkYi

.

.

.

εm Bi HmYi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

mn×n

0mn×n 0mn×n 0mn×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�̂
1
ik = √

�M −�m M̂ik (i ∈S;k =1,2,3,4)

�̂
2
ik = √

�M −�m N̂ik (i ∈S;k =1,2,3,4)

R̂ = �2
m R̂1 +(�M −�m )R̂2

Âi = [Ai X + Bi �̄Yi 0 Adi X 0]

Xi = [Xi , . . . , Xi︸ ︷︷ ︸
N−1

]

X̃ = diag{X1, . . . , Xi−1, Xi+1, . . . , X N }
X̃i = diag{Xi , . . . , Xi︸ ︷︷ ︸

m

}

˜̂
R = diag{R̂, . . . ,R̂︸ ︷︷ ︸

m

}

Proof
By Schur complement, the matrix inequality (15) holds if and only if⎡

⎢⎢⎢⎢⎢⎣
�̆ij AT

i Pi HT
ik Pi

√
�M −�m M

∗ −PiR
−1 Pi 0 0

∗ ∗ −PiR
−1 Pi 0

∗ ∗ ∗ −R2

⎤
⎥⎥⎥⎥⎥⎦<0 (41)

where

�̆ij =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̆1ij R1 + Mi1 Pi Adi − Mi1 + Ni1 −Ni1 �ijPi

∗ Q2 − Q1 − R1 + Mi2 + MT
i2 MT

i3 − Mi2 + Ni2 MT
i4 − Ni2 0

∗ ∗ −(1−�)Ti − Mi3 − MT
i3 + Ni3 + N T

i3 −MT
i4 + N T

i4 − Ni3 0

∗ ∗ ∗ −Q2 − Ni4 − N T
i4 0

∗ ∗ ∗ ∗ −�ijP̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�̆1ij = Pi Ai + AT
i Pi +�ii Pi +Ti + Q1 − R1 +�m S1 +(�M −�m )S2
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Pi = [Pi , . . . , Pi︸ ︷︷ ︸
N−1

]

P̃ = diag{P1, . . . , Pi−1, Pi+1, . . . , PN }

Owing to

(R−ε−1 Pi )
−1(R−ε−1 Pi )�0 (42)

which gives

−PiR
−1 Pi�−2εPi +ε2R (43)

we have that (41) holds if⎡
⎢⎢⎢⎢⎢⎣

�̆ij AT
i Pi HT

ik Pi
√

�M −�m M

∗ −2εPi +ε2R 0 0

∗ ∗ −2ε P̃i +ε2R̃ 0

∗ ∗ ∗ −R2

⎤
⎥⎥⎥⎥⎥⎦<0 (44)

Defining Xi = P−1
i , and applying the congruence transformation diag{Xi , Xi , Xi , Xi ,X̃i , Xi ,

X̃i , Xi } to (44) and setting T̃i = Xi Ti Xi , P̃i = Xi Pi Xi , R̃ j = Xi R j Xi , S̃ j = Xi S j Xi , Q̃ j = Xi Q j Xi ,
and Yi = Ki Xi (i ∈S, j =1,2). The result can be concluded from Theorem 1. This completes the
proof. �

Remark 6
The inequality (43) is used to bound the term −PiR

−1 Pi in (41). This step can be improved by
adopting the cone complementary algorithm [26], which is popular in recent control designs. The
scaling parameter ε>0 can be used to improve conservatism in Theorem 2.

Remark 7
From Theorem 2, it can be seen that the solvability of LMIs (39) and (40) depends on the
distribution of the actuator fault taking value. More information are taken into account in our
results comparing with the usual fault modeling method in existing results.

4. ILLUSTRATIVE EXAMPLES

In this section, well-studied examples are used to illustrate the effectiveness of the approaches
proposed in this paper.

Example 1
Consider a Markovian jump system in (36) with two modes and the following parameters [27]:

A1 =
[−3.4888 0.8057

−0.6451 −3.2684

]
, A2 =

[−2.4898 0.2895

1.3396 −0.0211

]

Ad1 =
[−0.8620 −1.2919

−0.6841 −2.0729

]
, Ad2 =

[−2.8306 −0.4978

−0.8436 −1.0115

]

Table I shows the comparative results with assumption that �22 =−0.8. Obviously, for the same
conditions for the time delay, our method can lead to less conservative results, and the criterion
can be applied to interval time-varying delays (Figures 1 and 2), that is, it is not needed that �m =0
and �<1.
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To illustrate the proposed method on reliable control, another example is considered as follows.

Example 2
Consider a MJS in (1) with two modes and following parameters:

A1 =
[ −1 0.5

−0.2 −1

]
, A2 =

[
1.8 0.8

0.15 −2

]

Ad1 =
[−0.25 0

0 −0.2

]
, Ad2 =

[
0.12 −0.1

0.1 −0.11

]

B1 =
[

0.5 0

0 −0.1

]
, B2 =

[
0.3 0

0 0.1

]
, �11 =−3,�22 =−1,

0<�(t)<0.7.

Two cases are considered as follows:
Case 1: We assume the actuators are normal, that is, The parameter � of fault model (6) has

expectation and variance

�̄ =
[

1 0

0 1

]

Table I. Maximum allowable values of �M with given �22 =−0.8.

�11 −0.2 −1.5

[27] (�=0) 0.635 0.534
Corollary 1 (�=0) 0.635 0.534
[27] (�=0.8) 0.424 0.414
Corollary 1 (�=0.8,�m =0) 0.496 0.483
[27] (�=1.3) 0.386 0.385
Corollary 1 (�=1.3,�m =0) 0.492 0.492
Corollary 1 (�=0.8,�m =0.1) 0.496 0.484
Corollary 1 (�=1.3,�m =0.1) 0.493 0.484
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0.5
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2.5
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Time t (sec)

M
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Figure 1. Operation modes.

Copyright � 2010 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2011; 32:313–327
DOI: 10.1002/oca



324 Z. GU ET AL.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time t (sec)

τ 
(t

)

Figure 2. Interval time-varying delay.
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Figure 3. Standard controller without failure.

and

� =
[

0 0
0 0

]
,

respectively.
Selecting ε=1, according to Theorem 2, we obtain the controllers called standard controller as

followers:

K1 =
[

0.7681 −0.9934
−2.0327 −3.8874

]
, K2 =

[−9.1930 −2.5499
−1.9576 11.4326

]
(45)

Case 2: Assuming the admissible set of actuator faults are given by

�̄ =
[

0.2 0
0 1

]

� =
[

0 0
0 0.2

]
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Figure 4. Reliable controller without failure.
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Figure 5. Standard controller with failure.

that is, there exist some actuator faults, such that actuator drifts and fluctuations occur. Selecting
ε=1, according to Theorem 2, we get the controllers called reliable controllers.

K1 =
[

3.8404 −4.9672

−2.0327 −3.8874

]
, K2 =

[−45.9652 −12.7497

−1.9576 11.4326

]
(46)

Assuming the initial conditions �(t)= [−1 1]T, t ∈ [0,0.7]. Figures 3 and 4 show the state
response for normal situation using the standard controller and the reliable controller, respectively.
It is clear that the two controllers perform very satisfactorily when no failures occur. When actuators
are abnormal, the state responses for the standard and the reliable controllers are shown in Figures 5
and 6, respectively. It is observed that when actuator failures occur, the closed-loop system with
the standard controller is not even asymptotically stable, while the closed-loop system using the
reliable controller still operates well and maintains an acceptable level of performance.
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Figure 6. Reliable controller with failure.

5. CONCLUSION

In this paper, we concentrate on the reliable control design problem for interval time-varying delay
systems with Markovian jumping parameters. Based on a new practical actuator fault model, a
reliable control design methodology is presented to achieve a less conservative result, not only when
the system is operating properly, but also in the presence of certain actuator failures. Numerical
examples are given to illustrate the design procedures.
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